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Figure S1.  Deletion of a partially hydrophic 20–amino acid loop allows purification of a soluble 407–amino acid N-terminal protein and does not affect 
the in vivo function of full-length V100. (A) Alignment of the N termini of V0a1 orthologues reveals a stretch of amino acids in the longest Drosophila iso-
form (shown at position 155–175 in the alignment and 142S-163Q in Drosophila [droso] V100) that is not present in yeast, Xenopus, zebrafish, mouse, 
or human. The red shaded sequence marks the Drosophila-specific amino acids deleted in the V100-loop. The color code marks the level of conservation 
across the shown sequences, from most to least conserved: red (100%), orange, green, light blue, and dark blue. (B) Coomassie gel of bacterial purified 
V100N-loop. (C) CD spectra reveal characteristic double minima at 208 and 222 nm, indicating significant -helical character. (D) Expression of full-
length V100-loop in null mutant photoreceptor neurons full rescues neurotransmission in ERG recordings. ctrl, control. ***, P < 0.001. (E) ERG depolariza-
tion is not affected by expression of V100-loop . WT, wild type. Error bars show SEMs.
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Figure S2.  Supplementary biochemical interaction experiments. (A and B) A 180–amino acid N-terminal V100 fragment without the CaM binding site 
binds to Syx1A but does not compete with SNAP25 binding. (A) GST-Syx1A pull-down with increasing amounts of V100-short (amino acids 10–143).  
(B) GST-Syx1A pull-down with increasing amounts of SNAP25. Note that there is no binding competition in either experiment. (C) GST pull-downs using 
Ca2+ concentrations of 1 mM and higher exhibit an increasing efficiency in the release of the competitive binding of V100N to Syx1A as revealed by in-
creased SNAP25 binding. The black line indicates the removal of an intervening lane for presentation purposes. (D–G) CaM directly interacts with V100N 
in a calcium-dependent manner. (D) Binding affinity curve for V100N with Ca2+–CaM using BLI (quantification shown in Table S1). Error bars show SEMs. 
(E) GST-Syx1A pull-down shows no direct CaM binding under our experimental conditions. (F) GST-CaM pull-down with V100N in the presence and ab-
sence of Ca2+. (G, top) Amino acid mutant to generate v100WFI. Yellow shaded areas show the exact nucleotides and amino acids changes in the v100WFI 
mutant. Red letters show the nucleotides in the wild-type sequence, which have been changed in the v100WFI mutant. (bottom) Pull-down analogous to F 
with V100NWFI reveals loss of CaM binding. (H) Co-IPs from adult fly brains reveal that only a small percentage of Syx1A exists in a complex with V100 
in neurons at a given time point. Under our experimental conditions, most V100 protein in a protein extract can be immunoprecipitated with anti-V100 
antibodies. In contrast, only 5% of the much more abundant Syx1A protein is immunoprecipitated with anti-Syx1A antibodies. In each case, the other 
protein is coimmunoprecipitated, indicating that ≤50% of V100 in homogenized fly brain tissue is in a complex with Syx1A, whereas only 1% or less of 
the more abundant Syx1A in the brain is complexed with V100. Note that some interactions may be lost as a result of dissociation in the detergent extract. 
IB, immunoblot.
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Figure S3.  Generation of CaM binding–deficient V100WFI with low expression at endogenous levels, localizes to synapses, does not disrupt synaptic pro-
tein localization, and rescues FM1-43 uptake. (A and B) Western blot from dissected eyes and probed with V100 antibody determines endogenous expres-
sion levels of V100WFI and V100WT in null mutant photoreceptors compared with wild-type (WT) photoreceptors. Note that loss of v100 is embryonically 
lethal, and >90% mutant eyes were generated using the eyeless-flippase (eyFLP) mosaic method as described previously (Hiesinger et al., 2005). resc., res-
cue. (C) Photoreceptor-specific expression of v100WT and v100WFI in v100-null mutant eyes (glass multiple reporter–Gal4 at 18°C) causes no developmental 
defects or other notable toxicity (see ERG recordings in Fig. 3, A–C). (D) Adult photoreceptor synapses immunolabeled for V100. (E) Embryonic NMJs im-
munolabeled for active zones (nc82), V100, and neuronal membrane (HRP). Single V100 channels are shown in grayscale. (F) Embryonic NMJs immuno-
labeled for n-Syb and V100. (G) Quantification of immunolabels as in F. (H, top) Complete wild-type embryo fillet after FM1-43 uptake experiment, fixation, 
and counterlabeling of neuronal membranes with HRP (blue). (bottom) Representative images of individual NMJs for the indicated genotypes and stimula-
tion conditions. Quantification in Fig. 4 C. ctrl, control. Error bars show SEMs. Bars: (C) 200 µm; (D, F, and H) 10 µm; (E) 1 µm.

Table S1. Binding of V100N to Syx1A, SNAP25, and Ca2+–CaM based on BLI

Interaction Parameters

Kd kon koff R2

M M1s1 s1

V100N–Syx1A 2.25 × 106 1.02 × 103 2.29 × 103 0.98
V100N–SNAP25 4.50 × 106 0.60 × 103 2.68 × 103 0.90
V100N–Ca2+–CaM 2.40 × 106 0.50 × 103 1.20 × 103 0.95
Syx1A–SNAP25 0.13 × 106

Syx1A–SNAP25 was measured by pull-down and Western immunoblotting as in Rickman et al. (2004).
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