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ABSTRACT: Membrane protein turnover and deg-

radation are required for the function and health of all

cells. Neurons may live for the entire lifetime of an organ-

ism and are highly polarized cells with spatially segre-

gated axonal and dendritic compartments. Both

longevity and morphological complexity represent chal-

lenges for regulated membrane protein degradation. To

investigate how neurons cope with these challenges, an

increasing number of recent studies investigated local,

cargo-specific protein sorting, and degradation at axon

terminals and in dendritic processes. In this review, we

explore the current answers to the ensuing questions of

where, what, and when membrane proteins are degraded

in neurons. VC 2017 Wiley Periodicals, Inc. Develop Neurobiol 00:

000–000, 2017

Keywords: neuronal maintenance; membrane degrada-

tion; endosome; lysosome; autophagy

INTRODUCTION

Continuous synthesis and degradation through

homeostatic regulation of protein turnover ensure a

functional pool of proteins. Neuronal longevity and

morphological complexity represent challenges for

both cytosolic and membrane protein turnover (Stew-

ard and Schuman, 2003; Wang and Hiesinger, 2012;

Bezprozvanny and Hiesinger, 2013; Alvarez-

Castelao and Schuman, 2015). Cytosolic proteins are

predominantly subject to proteasomal degradation

(Ciechanover, 2005; Yi and Ehlers, 2007; Tai and

Schuman, 2008; Bhattacharyya et al., 2014; Cohen-

Kaplan et al., 2016). In contrast, membrane proteins

are either degraded through an endo-lysosomal mech-

anism or autophagy (Klionsky and Emr, 2000; Luzio

et al., 2007; Eskelinen and Saftig, 2009; Schulze

et al., 2009; Tooze et al., 2014; Huber and Teis,

2016; Galluzzi et al., 2017). Defects in cytosolic and

membrane protein degradation typically result in pro-

tein accumulation and neuronal dysfunction. Such

defects can occur at synapses prior to defects in the

cell body and are hallmarks of many neurodegenera-

tive diseases (Arendt, 2009; Shankar and Walsh,

2009; Wong and Cuervo, 2010; Morales et al., 2015;

Soto and Kerschensteiner, 2015).

Local protein synthesis and degradation via the

proteasome have long been described in neurons
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(Steward and Schuman, 2003). Recent whole-

proteome analyses in yeast suggest distinct subcellu-

lar localization of protein synthesis and degradation

pathways, which might indicate an evolutionary base

for the compartmentalized regulation of these events

in morphologically more complex cells, including

neurons (Shao and Hegde, 2014). Interestingly, a

recent proteomics study in neurons based on inhibi-

tion of the ubiquitin-proteasome system indicated

that only a minority of synaptic proteins depend on

proteasomal degradation under basal conditions

(Hakim et al., 2016). However, many of the proteins

for which local mRNA deposits have been found in

dendrites are membrane proteins, including the

NMDA and inositol 1,4,5-triphosphate (InsP3) recep-

tors (Steward and Schuman, 2003). Here, we focus

on membrane degradation and refer readers to excel-

lent reviews on the degradation of cytoplasmic pro-

teins by the ubiquitin-proteasome system (Bingol and

Schuman, 2005; Yi and Ehlers, 2007; Tai and Schu-

man, 2008; Alvarez-Castelao and Schuman, 2015;

Kaushik and Cuervo, 2015; Labbadia and Morimoto,

2015; Cohen and Ziv, 2017).

Membrane protein turnover is of particular impor-

tance to the maintenance of neuronal function. At the

presynaptic terminal the synaptic vesicle cycle poses a

formidable challenge to membrane protein turnover.

Recent work has provided evidence for how dysfunc-

tional or aging synaptic proteins are sorted for degrada-

tion (Uytterhoeven et al., 2011; Fernandes et al., 2014;

Sheehan et al., 2016). Similarly, the postsynaptic com-

partment requires continuous cycles of endocytosis/

exocytosis of membrane proteins, such as neurotrans-

mitter receptors (Coussen, 2009; Santos et al., 2009).

However, where the actual degradation occurs, with

what cargo-specificity, and when during the develop-

ment, function, and aging of neurons remain challeng-

ing questions for all known mechanisms.

Canonical endolysosomal degradation and autoph-

agy are responsible for degradation of (but not limited

to) membrane proteins. In both pathways, proteins are

delivered to highly acidic, degradative organelles where

degradation is initiated by acidification-activated pro-

teases (Kaur and Debnath, 2015; Xu and Ren, 2015;

Luzio et al., 2007; Schink et al., 2016; Takats et al.,

2016; Lorincz et al., 2017). Canonical endolysosomal

degradation requires maturation of early endosome to

late endosome or multivesicular body (MVB), followed

by fusion with lysosomes for degradation. Ubiquitin

attachment to membrane proteins serves as a signal for

the endocytic internalization from the plasma mem-

brane and is the signal for trafficking of protein from

early endocytic vesicles to MVBs. Endosomal sorting

complexes required for transport (ESCRT) is the core

protein machinery to recognize ubiquitinated proteins

in endosomes and sort them to MVBs (Katzmann et al.,

2001; Henne et al., 2011).

In (macro-) autophagy, a double membrane called
phagophore forms around “to-be-degraded” cargo,

such as vesicles containing membrane proteins, cyto-
solic proteins, protein aggregates, and organelles.
After cargo engulfment, autophagosomes fuse with
lysosomal vesicles to form degradative autolysosomes
(Xie and Klionsky, 2007; Kraft and Martens, 2012;
Coutts and La Thangue, 2016; Nishimura et al., 2017;
Wang et al., 2017). Despite the abundance of trans-

membrane proteins in both presynaptic and postsynap-
tic compartments, progress has only recently been
made to address what membrane proteins are degraded
by either mechanism in neurons (Ashrafi and Schwarz,
2013; Huber and Teis, 2016; Mancias and Kimmel-
man, 2016; Zaffagnini and Martens, 2016; Vijayan
and Verstreken, 2017). More studies have focused on

the dysregulation of these degradative pathways in
relation to neurodegenerative diseases than their wild-
type maintenance function (Hara et al., 2006; Komatsu
et al., 2006; Menzies et al., 2017; Moors et al., 2017).
In the following sections, we will focus on membrane
degradation via the autophagosomal and endolysoso-
mal system, and our current understanding of where,

what, and when these mechanisms degrade membrane
proteins in neurons independent of disease-specific
neurotoxic insults.

WHERE ARE MEMBRANE PROTEINS
DEGRADED IN NEURONS?

The distances between dendrites, the cell body, and

the axon tip raise questions about the spatial regula-

tion of membrane protein sorting and degradation.

Three ways to remove synaptic membrane proteins

from distal axons and dendrites have been proposed

(Fig. 1): (1) synaptic membrane proteins may be

sorted into endosomes and autophagosomes for retro-

grade trafficking back to the cell body, (2) membrane

proteins may be sorted and degraded locally, and (3)

membrane proteins may be secreted and taken up by

neighboring cells for degradation. In this section, we

will review current evidence for these three possibili-

ties. How the implicated endolysosomal or autopha-

gosomal mechanisms may operate in the different

neuronal compartments will be discussed in the sub-

sequent section.

Retrograde Transport Back to Cell Body

Neurons employ robust microtubule-dependent trans-

port machinery to traffic proteins and organelles
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between the cell body, dendrites and distal axons

(Maday et al., 2014). Microtubule-based axonal

transport utilizes two main types of molecular

motors: kinesin for plus-end directed anterograde

transport (from cell body to axon terminals) and

dynein-dynactin complex for minus-end directed ret-

rograde transport (from axon terminals to cell body)

(Schnapp and Reese, 1989; Pilling et al., 2006; Enca-

lada et al., 2011). Live imaging of late endosomes,

lysosomes, and autophagosomes in axons revealed

net retrograde trafficking, suggesting that degradation

may happen in the cell body [Fig. 1(A)] (Hollenbeck

and Bray, 1987; Parton et al., 1992; Hollenbeck,

1993; Maday et al., 2014; Cheng et al., 2015). Defec-

tive retrograde transport causes dramatic accumula-

tions of late endosomes and autophagosomes in

axons as well as impaired autophagic and lysosomal

degradation (Ravikumar et al., 2005; Cai et al., 2010;

Lloyd et al., 2012). Such defects have been linked to

late-onset, progressive motor neuron degeneration

such as amyotrophic lateral sclerosis (ALS) or spinal

muscular atrophy (SMA) (Hafezparast et al., 2003;

Puls et al., 2003; Munch et al., 2004; Levy et al.,

2006; Lai et al., 2007; Chevalier-Larsen et al., 2008;

Laird et al., 2008; Strom et al., 2008; Hirokawa et al.,

2010).

Autophagosomes form in the distal axons, initially

exhibit bidirectional movements, but eventually

switch to robust retrograde transport for degradation

in the cell body (Maday and Holzbaur, 2012, 2014;

Maday et al., 2014). This initial bidirectional trans-

port is carried out when both kinesin-1 and dynein

motors tightly bind to autophagosomes, but on inter-

action between LC3 on autophagosome and JNK-

interacting protein 1 (JIP1), kinesin-1 activation is

blocked, resulting in the robust retrograde transport

back to cell body (Fu et al., 2014; Maday et al.,

2014). Dynein motors are recruited to autophago-

somes after fusion with late endosomes (Cheng et al.,

2015). In some studies, autophagosome maturation

and degradation were observed only during or after

retrograde transport following autophagosome bio-

genesis at the axon terminal (Maday and Holzbaur,

2012), consistent with the earlier report of the pro-

gressive increase in the proportion of acidic endo-

cytic organelles along axons closer to the soma

(Overly and Hollenbeck, 1996). These findings sup-

port the prevalent idea that degradation may occur

preferentially in the cell body or en route to the cell

body [Fig. 1(A)] (Maday and Holzbaur, 2016).

Late endosomes and lysosomes exhibit retrograde

transport behavior distinct from autophagosomes,

most likely resulting from different molecular inter-

actions with adaptors and motor proteins. Kinesin-2

is the primary motor protein to regulate anterograde

movement of late endosomes and lysosomes (Brown

Figure 1 Three models for where neuronal membrane proteins sort and degrade. (A) Synaptic

membrane proteins are sorted for degradation locally, and then undergo retrograde axonal traffick-

ing to the cell body for degradation. (B) Sorting and degradation of synaptic membrane proteins

occur locally in axon terminals and dendrites. (C) Neurons release synaptic membrane proteins out-

side via extracellular vesicles, which are taken by neighboring cells for degradation.
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et al., 2005). Retrograde transport of late endosomes

and lysosomes requires direct interaction between

Rab7 effector protein Rab7 Interacting Lysosomal

Protein (RILP) and the C-terminal region of a dynac-

tin subunit p150 (Glued) (Jordens et al., 2001;

Johansson et al., 2007; Maday et al., 2014). The

highly conserved CAP-Gly domain of p150 initiates

the retrograde transport from distal axons (Lloyd

et al., 2012; Moughamian and Holzbaur, 2012). Sna-

pin, a neuronal SNARE-binding protein, also regu-

lates retrograde transport of late endosomes by

tethering them to dynein (Cai et al., 2010). Unlike

autophagosomes that exhibit robust retrograde trans-

port, late endosomes, and lysosomes have been

reported to traffic bidirectionally with frequent

pauses and directional changes in a constant tug-of-

war between the opposing motors that are simulta-

neously present on the organelles (Deacon et al.,

2003; Bananis et al., 2004; Muller et al., 2008; Hen-

dricks et al., 2010; Lloyd et al., 2012; Maday et al.,

2014).

Lysosomes containing proteases are preferentially

enriched in the cell body, whereas lysosomes at distal

axons have been reported to lack luminal proteases

and, therefore, lack degradative capacity (Gowrishan-

kar et al., 2015). In this case, late endosomes,

lysosomes, and autophagosomes would require to ret-

rogradely traffic back to cell body for degradation

[Fig. 1(A)]. Highly acidic pH is required for lyso-

somal function, and less acidic pH can, therefore,

reduce the degradative capacity of lysosomes. A

recent study reported that lysosomal pH depends on

intracellular positioning, with lysosomes closer to the

cell periphery being less acidic (Johnson et al., 2016),

although it is not known if this is also the case for

lysosomes at synapses. These studies support the

need for retrograde transport of degradative organ-

elles and degradation in the cell body.

In some vertebrates, synapses can be separated

from the cell body through axons over a meter in

length. Considering these distances, even if the car-

gos are transported at the fastest reported axonal

speed (�10 cm/day), it would take days for synaptic

proteins to reach the cell body for degradation (Graf-

stein and Forman, 1980; Miller and Heidemann,

2008). Such long distances may not be an obstacle

for retrograde trafficking-dependent degradation if

dysfunctional cargoes do not affect normal function

and health of a neuron. Alternatively, degradation

and protein synthesis are often closely linked through

feedback mechanisms that ensure protein homeosta-

sis (Alvarez-Castelao and Schuman, 2015; Cajigas

et al., 2010). In this case, long trafficking distances

would represent a challenge for mechanisms of local

protein homeostasis in neurons.

Local Membrane Protein Degradation at
Synapses

Neurons have to rapidly and homeostatically respond

to varying conditions both during developmental axo-

nal and dendritic growth as well as neuronal activity.

Ample evidence for local protein synthesis and pro-

teasomal degradation in dendrites strongly suggest

the autonomous regulation of protein turnover at syn-

apses (Pierce et al., 2001; Wang et al., 2010; Ramirez

and Couve, 2011; Holt and Schuman, 2013). Most

studies on protein degradation in neurons have

focused on proteasomal degradation, and several

studies have demonstrated that proteins are degraded

locally through proteasomal degradation at postsyn-

aptic terminals (Speese et al., 2003; Yi and Ehlers,

2007; Hamilton and Zito, 2013). However, proteaso-

mal degradation may not be responsible for the deg-

radation of the majority of synaptic proteins in axon

terminals (Hakim et al., 2016).

Similar to the proteasomal degradation machinery,

membrane degradation machinery has been observed

both at axon terminals and near or in dendritic spines

(Frampton et al., 2012; Goo et al., 2017). Frampton

et al. (2012) showed the abundance of proteins

lysosomal-associated membrane protein 2 (LAMP2)

and microtubule-associated protein 1 light chain 3

(LC3) in axons and axon terminals, suggesting that

lysosomes and autolysosomes are located at axon ter-

minals. Using compartmentalized rat superior cervical

ganglion (SCG) neuronal cultures, they observed a sig-

nificant increase of LAMP2 protein exclusively in the

distal axons on nerve growth factor (NGF) stimulation

(Frampton et al., 2012). Recruitment of lysosomes to

dendritic spines in an activity-dependent manner was

also recently reported (Goo et al., 2017). These obser-

vations suggest that the abundance of lysosomes, and

perhaps lysosomal degradation, is regulated locally at

distal axon terminals, and possibly independently from

lysosomes at the cell body [Fig. 1(B)].

Several recent studies characterized mechanisms for

the local regulation of autophagosome formation by

synaptic proteins at axon terminals. Soukup et al.

(2016) demonstrated an unexpected role of the synap-

tically enriched protein Endophilin A (EndoA), which

was previously characterized during synaptic vesicle

endocytosis (Song and Zinsmaier, 2003). On phos-

phorylation by the Parkinson’s disease-associated

kinase LRRK2, EndoA recruits Atg3 to the growing

membrane of autophagosomes and causes it to coloc-

alize with Atg8 (LC3) (Soukup et al., 2016). In
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addition, Okerlund et al. (2017) showed that the pre-

synaptic active zone protein Bassoon selectively inhib-

its autophagy by interacting with Atg5 [Fig. 2(B)].

The CC2 domain of Bassoon interacts with Atg5, pos-

sibly regulating the formation of the Atg5-Atg12-

Atg16 complex. Loss of Bassoon function triggers

synaptic autophagy (Okerlund et al., 2017). The idea

of autophagosome formation at the axon terminals is

consistent with findings by Maday and Holzbaur

(2012, 2014, 2016). Although local degradation of

membrane proteins via autophagy has not been

directly demonstrated, local degradation of mitochon-

dria through PINK/PARKIN-mediated mitophagy at

axon terminals has been reported (Ashrafi et al.,

2014). As shown in this study, selective induction of

mitochondrial damage by mitochondrial KillerRed

(mt-Kr), a genetically encoded photosensitizer targeted

to mitochondria, leads to the recruitment of autopha-

gosomes and lysosomes to damaged mitochondria for

degradation locally in the axons.

In addition to autophagy, two neuron-specific pro-

teins that predominantly function at synaptic termi-

nals have been reported to constitute a local, neuron-

specific branch of the endolysosomal degradation

system: the vesicular ATPase component V100 and

the vesicle SNARE neuronal Synaptobrevin (n-Syb)

(Williamson et al., 2010a; Haberman et al., 2012;

Wang and Hiesinger, 2012; Bezprozvanny and Hie-

singer, 2013). Both proteins were initially character-

ized as synaptic vesicle proteins in synaptic vesicle

exocytosis (Perin et al., 1991; DiAntonio et al., 1993;

Deitcher et al., 1998; Schoch et al., 2001; Hiesinger

et al., 2005). Loss of function of either V100 or n-

Syb causes local sorting and degradation defects at

axon terminals, which eventually lead to adult-onset

neurodegeneration in Drosophila photoreceptors

(Williamson et al., 2010a; Haberman et al., 2012).

After the initial cargo overload in endosomes in both

mutants, autophagy is activated as an apparent sec-

ondary, compensatory effect. It is interesting to note

that both proteins are almost exclusively located at

axon terminals, indicating that neurons implement an

additional, neuron-specific endolysosomal sorting,

and degradation mechanism locally at axon terminals

to meet a high or specialized demand for membrane

protein turnover.

Presence of membrane protein degradation

machinery and identification and characterization of

synaptic autophagy and endolysosomal degradation

are strong indicators that membrane proteins are

sorted for degradation locally at synapses [Fig. 1(B)].

However, direct demonstration of where membrane

proteins are degraded in neurons remains unclear

because protein degradation is mostly assayed in the

entire neuron without separation of distal axons and

dendrites from cell bodies (Cohen et al., 2013; Price

et al., 2010; Sheehan et al., 2016; Cohen and Ziv,

2017). Protein half-lives in neurons are studied using

isotopic labeling with amino acids, such as stable iso-

tope labelling with amino acids in cell culture

(SILAC), followed by mass spectrometry (MS) in

mouse or rat cortical neurons (Price et al., 2010;

Cohen et al., 2013). Activity-dependent protein deg-

radation in neurons has been demonstrated biochemi-

cally with western blot analyses before and after

neural activation in cultured rat hippocampal or corti-

cal neuron (Shehata et al., 2012; Widagdo et al.,

2015; Sheehan et al., 2016). Separation of neuronal

compartments can be achieved using microfluidic

culture devices (Taylor et al., 2005; Park et al., 2006;

Taylor et al., 2006; Taylor and Jeon, 2010; Taylor

et al., 2010). Such methods have been used to demon-

strate local proteasomal degradation in growth cones

(Deglincerti et al., 2015), and local degradation of

damaged mitochondria by autophagy in axons (Ash-

rafi et al., 2014).

Release into Neighboring Cells

Neurons can rid themselves of membrane proteins

and other cargo through the release of extracellular

vesicles (EVs) followed by uptake in a neighboring

cell [Fig. 1(C)] (Simons and Raposo, 2009; Raposo

and Stoorvogel, 2013; Budnik et al., 2016). Two

major types of EVs are exosomes and microvesicles.

Exosomes are intraluminal vesicles (ILVs) inside

multivesicular bodies (MVBs) that are released into

the extracellular space on direct fusion of MVBs with

the plasma membrane. Microvesicles are vesicles

that form by an outward budding of the plasma mem-

brane. As a result, microvesicles are typically larger

(100 nm to 1 um in diameter) than exosomes (30–

100 nm in diameter) (Colombo et al., 2014). The con-

tent that can be released as EVs is not limited to

membrane proteins and also includes mRNA, cyto-

solic proteins, and lipids. Two general functions of

exosome secretion have been proposed: degradation

and intercellular communication. Here, we focus on

what is known about degradation of membrane proteins

by neighboring cells, while other functions of exosomes

are presented and comprehensively reviewed elsewhere

(Lotvall and Valadi, 2007; Simons and Raposo, 2009;

Fruhbeis et al., 2012; Raposo and Stoorvogel, 2013;

Budnik et al., 2016).

Exosome secretion from neurons was first reported

in mature cortical neurons as well as in vivo at the

Drosophila neuromuscular junction (NMJ) (Faure

et al., 2006; Korkut et al., 2009). Since then, many

Membrane Protein Degradation in Neurons 5
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studies have focused on the release of disease-

associated proteins and aggregates, such as tau,

amyloid-beta peptides, huntingtin, and superoxide

dismutase-1 (SOD-1), from neurons via exosomes

(Saman et al., 2012; Yuyama et al., 2012; Deng et al.,

2017). It was recently demonstrated that the synaptic

vesicle protein cysteine string protein (CSPa) mediates

the release of exosomes containing polyglutamine

expanded protein 72Q huntingtin and superoxide

dismutase-1 (SOD-1) (Deng et al., 2017). Conse-

quently, loss-of-function of CSPa in Drosophila and

C. elegans mutants demonstrate uncoordinated move-

ments, neurodegeneration, and early lethality possibly

due to defective release of 72Q huntingtin and SOD-1

(Zinsmaier et al., 1994; Kashyap et al., 2014).

EVs released from a neuron can be taken up by

another neuron, glia or any other neighboring cells.

Synaptic activity was shown to bias the binding of

exosomes to neighboring neurons rather than glial

cells (Chivet et al., 2014). The EVs can then be

degraded in any of these recipient cells by fusing

directly with the plasma membrane followed by endo-

cytosis and endolysosomal degradation. Amyloid-beta

peptides released via neuronal exosomes were reported

to be cleared via microglia (Yuyama et al., 2012).

Exosomes may also be released into other neighboring

cells, including muscles at the neuromuscular junction

(NMJ) (Budnik et al., 2016) and epithelial cells in the

case of Drosophila sensory class IV dendritic

arborization (da) neurons (Han et al., 2014). Further-

more, clearance of degenerating dendrite fragments of

Drosophila class IV da neuron was reported for the

neighboring epidermal cells (Han et al., 2014). In con-

trast, it is less clear whether synaptic membrane pro-

teins are degraded in neighboring cells.

WHAT MEMBRANE PROTEINS AND
MECHANISMS ARE IMPLICATED IN
NEURONAL DEGRADATION

Autophagosomes and endolysosomal compartments

are available in distal axons and dendrites. Recent

studies have started to identify what cargos may be

degraded by these mechanisms, but the list of mem-

brane proteins tested so far is relatively short (Fig. 2).

In this section, we will discuss what is currently

known about what cargoes are degraded by what

membrane protein degradation mechanism in neurons.

Synaptic Autophagy

Autophagy is highly conserved from yeast to mam-

mals, and most of our knowledge is derived from stud-

ies in non-neuronal cells or neuronal cell bodies

(Ohsumi, 2014). Unlike non-neuronal cells, primary

cultured neurons may not upregulate autophagy in

response to starvation, but instead employ constitutive

Figure 2 Schematic overviews of cargo-sorting and degradation mechanisms operating in devel-

oping and mature neurons. (A) Developmental and constitutive degradation by autophagy, canoni-

cal endolysosomal degradation, and neuron-specific endolysosomal degradation (Neuronal Sort and

Degrade; NSD). Plasma membrane (PM) proteins such as guidance receptors are degraded through

NSD (Williamson et al., 2010b). It has not been shown what membrane proteins are degraded

through autophagy and canonical endolysosomal degradation in a developing neuron. (B) Mecha-

nisms of activity-dependent cargo-sorting and degradation in presynaptic and postsynaptic termi-

nals through endolysosomal degradation or autophagy.
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autophagy to maintain protein homeostasis (Maday

and Holzbaur, 2016). Several recent studies focused

on the molecular characterization of neuronal autoph-

agy, particularly at presynaptic terminals (Soukup

et al., 2016; Okerlund et al., 2017; Vanhauwaert et al.,

2017; Vijayan and Verstreken, 2017).

Macroautophagy is well characterized for its ability
to bulk degrade membrane proteins, organelles, cyto-
solic proteins, and protein aggregates. The recent obser-
vation of synaptic vesicles in pre-autophagosomal
structures in Drosophila NMJ and cultured rat hippo-
campal neuron cell bodies by Binotti et al. (2015) sug-
gests that synaptic vesicle proteins may be degraded as
bulk cargo, although degradation was not directly
shown [Fig. 2(B)]. They demonstrated that a small Rab
GTPase Rab26, which is predominantly localized to
synaptic regions in Drosophila (Chan et al., 2011),
interacts with Atg16L and directs synaptic vesicles to
pre-autophagosomal structures (Binotti et al., 2015).
Rab26 overexpression resulted in accumulation of syn-
aptic vesicles in preautophagosomes in Drosophila
NMJ. This suggests a mechanism that directly engulfs
the entire synaptic vesicles for degradation without
more specific protein sorting.

Postsynaptic membrane proteins such as GABA and

AMPA receptor subunits are reported to be degraded

through autophagy, although where these receptors are

degraded still remains unknown [Fig. 2(B)] (Rowland

et al., 2006; Shehata et al., 2012; Widagdo et al.,

2015). Degradation of AMPA receptor subunits
GluA1 and GluA2, assayed by western blot analyses

of cultured rat hippocampal or cortical neurons, was

correlated with the autophagosomal or lysosomal

markers LC3-II and LAMP1, respectively (Shehata

et al., 2012; Widagdo et al., 2015). Moreover, inhibi-

tion of autophagy with Wortmannin prevented AMPA
receptor degradation (Shehata et al., 2012). In C. ele-
gans neuromuscular system, internalized GABA

receptors were reported to colocalize with autophago-

somes (Rowland et al., 2006). Loss of both GABA

and acetylcholine motor neuron innervations in the

postsynapse, the dorsal muscle, caused internalization

and sorting of only GABA, but not acetylcholine,
receptors to autophagosomes in the dorsal muscle.

This suggests that autophagy may employ cargo-

specific sorting for degradation postsynaptically.

Canonical Endolysosomal Degradation

In addition to autophagy, neurons share canonical

endolysosomal machinery with non-neuronal cells. In

endolysosomal degradation, membrane proteins are

internalized through endocytosis and subsequently

progress through late endosomal and lysosomal

stages. Genetic studies in yeast, worms, flies, and

mammals have identified a set of conserved and

essential proteins that function in the endolysosomal

progressions and lysosome biogenesis. The two ubiq-

uitously expressed small Rab GTPases, Rab5 and

Rab7, are key regulators of endocytosis and endoso-

mal maturation, respectively [Fig. 2(B)] (Bucci et al.,

1992; Vitelli et al., 1997). The ESCRT pathway is

the core machinery that sort and direct ubiquitinated
proteins for degradation (Katzmann et al., 2001;

Henne et al., 2011; Schuh and Audhya, 2014). Mem-
brane proteins can be ubiquitinated by the sequential

action of E1 (ubiquitin-activating enzymes), E2
(ubiquitin-carrier/conjugating enzymes), and E3
(ubiquitin ligases). Ubiquitinated membrane proteins

are then recognized by the ESCRT-0 complex, which
results in subsequent recruitment of ESCRT-I, -II,

and –III for delivery of the ubiquitinated protein into
MVB by intraluminal vesicle (ILV) formation

(Henne et al., 2011; Schuh and Audhya, 2014).
Numerous regulatory and tethering complexes are
required for endolysosomal progression, including

the CORVET and HOPS, which are reviewed in
detail elsewhere (Balderhaar and Ungermann, 2013;

Solinger and Spang, 2013; Luzio et al., 2014).

Rab7 is expressed ubiquitously in all cell types of an
organism, but its early expression is strongly enriched

in the nervous system in Drosophila (Chan et al.,
2011). Missense mutations in rab7 cause the neuropa-

thy Charcot–Marie–Tooth type 2B (CMT2B) in
patients (Verhoeven et al., 2003). Studies of the

disease-associated mutations suggested toxic gain-of-
function effects in cell culture (Spinosa et al., 2008;
Cogli et al., 2010; McCray et al., 2010; Cogli et al.,

2013; Zhang et al., 2013). In contrast, a study in Dro-
sophila revealed no toxic effects of the mutant proteins,

but indicated partial loss of function as the underlying
mechanism (Cherry et al., 2013). It is intriguing that

mutations in rab7, which is ubiquitously expressed,
cause the first observable defect in some of the longest
neurons in the human body. As discussed above, neu-

rons may be more sensitive to defects in membrane
protein degradation because of their longevity as well

as morphological complexity. Hence, neurons, and par-
ticularly synapses, may have particularly high or spe-

cialized demands on endolysosomal degradation.
However, it remains to be investigated what membrane
proteins are degraded by canonical endolysosomal deg-

radation as opposed to autophagy and neuron-specific
mechanisms in neurons (Fig. 2).

Skywalker/Rab35-Dependent Sorting
and Degradation Is Cargo-Specific

At axon terminals, synaptic vesicles undergo continu-

ous exo-/endocytic recycling (Heuser and Reese,
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1973; Sudhof, 2004; Rizzoli, 2014; Kononenko and

Haucke, 2015). Endocytosed membrane and mem-

brane proteins are either sorted for synaptic vesicle

recycling or degradation. Sorting stations have been

proposed as “sorting endosome” or “early vacuoles.”

Key regulators of this sorting mechanism are Rab35

and its GTPase activating protein (GAP), Skywalker

[Fig. 2(B)] (Uytterhoeven et al., 2011; Sheehan et al.,

2016). In sky mutants, Uytterhoeven et al. (2011)

observed that synaptic vesicle recycling through the

sorting endosome was increased. Correspondingly,

degradation of dysfunctional (ubiquitinated) n-Syb

was increased, and this resulted in an increased readily

releasable pool (RRP) and synaptic neurotransmission

at the Drosophila NMJ. Mutations in skywalker were

also reported to cause epilepsy and DOORS syndrome

in human (Fischer et al., 2016). Using a fluorescence

timer tagged n-Syb, Fernandes et al. (2014) reported

an increased protein turnover through lysosomal deg-

radation in the sky mutant, which resulted in a younger

pool of proteins compared to wild-type (Fernandes

et al., 2014). These seminal studies show how local

synaptic vesicle protein turnover affects the pools of

functional synaptic vesicles. Sorting and degradation

may require recognition of dysfunctional proteins, as

indicated by ubiquitination. Alternatively, the sky-
dependent mechanism may function to continuously

turn over synaptic vesicle proteins independent of their

functional status. It remains to be investigated whether

and how functional and dysfunctional proteins residing

on the same vesicle could be sorted out and whether

their degradation ultimately occurs locally.

Sheehan et al. (2016) report the first evidence of

differential specificities for different synaptic vesicle

proteins through the Rab35-dependent mechanism in

vertebrate neurons. On neuronal activation, the Sky-

walker/Rab35 and ESCRT pathway selectively sorts

and degrades neuronal Synaptobrevin (n-Syb)/

VAMP2 and SV2, but not Synaptotagmin 1 (Syt1)

and Syntaxin (Syx). This suggests that individual SV

proteins are recognized and sorted for degradation.

How Sky/Rab35 recognizes these specific proteins

for degradation remains an open question. It also

remains unknown whether Sky/Rab35 specifically

sorts SV proteins or also other non-SV proteins in the

presynaptic terminal, whether this sorting mechanism

also exists in the postsynaptic terminals, and whether

retrograde trafficking of degradative vesicles plays a

role.

Neuron-Specific Endolysosomal
Degradation

Autophagy and the Sky/Rab35-dependent endolyso-

somal mechanism exist in all cells, but are likely to

function in a specialized manner at synaptic terminals

(Fernandes et al., 2014; Vijayan and Verstreken,

2017). In addition, at least two neuron-specific inte-

gral membrane proteins function in endolysosomal

sorting and degradation based on findings in Dro-
sophila: the vesicle SNARE neuronal Synaptobrevin

(n-Syb) and the vesicle ATPase component V100

(Williamson et al., 2010a; Haberman et al., 2012).

Both proteins have previously been characterized as

synaptic vesicle proteins (Perin et al., 1991; Schoch

et al., 2001). Loss of either protein in Drosophila
photoreceptor neurons leads to endolysosomal mem-

brane accumulations at axon terminals, indicating a

link between the synaptic vesicle cycle and synaptic

membrane turnover (Williamson et al., 2010a; Haber-

man et al., 2012; Wang and Hiesinger, 2012; Bez-

prozvanny and Hiesinger, 2013). However, it is

currently unclear whether this neuron-specific branch

of the endolysosmal system has a cargo-specificity

that differs from the canonical endolysosomal degra-

dation. Several plasma membrane receptors have

been shown to accumulate in the v100 mutant brains

(Williamson et al., 2010b). In the v100 mutant photo-

receptor neurons, different membrane receptors accu-

mulated in cell bodies versus axon terminals,

suggesting that the neuron-specific branch of the

endolysosomal system may sort and degrade different

membrane proteins in axon terminals versus in the

cell body.

WHEN ARE MEMBRANE PROTEINS
DEGRADED IN NEURONS?

Membrane protein turnover plays roles during neuro-

nal development, function, and maintenance. Consti-

tutive membrane protein degradation may occur

during all stages of a neuron’s lifetime and is not reg-

ulated by neuronal activity [Fig. 2(A)]. In contrast,

activity-dependent turnover and degradation is a

direct function of neuronal activity levels and is rele-

vant to function and maintenance [Fig. 2(B)]. In this

last section, we highlight the differences between

these mechanisms during the life of a neuron.

Constitutive and Developmental
Degradation

Activity-independent, constitutive protein degrada-

tion has been highlighted recently (Maday and Holz-

baur, 2016; Cohen and Ziv, 2017). Synaptic vesicle

proteins may undergo constitutive turnover and deg-

radation already during development [Fig. 2(A)].

Synaptotagmin 1 (Syt1), a calcium sensor necessary

8 Jin et al.

Developmental Neurobiology



for synaptic vesicle release, and n-Syb are already

present at axon terminals prior to synaptogenesis

(Hiesinger et al., 1999; Williamson et al., 2010b).

While synaptic autophagy has been reported as a con-

stitutive degradation mechanism (Maday and Holz-

baur, 2016), it remains unclear whether this

mechanism degrades synaptic vesicle proteins during

development.

Membrane protein degradation has been impli-

cated in neural development, including axonal

growth, synapse elimination, and pruning (Yogev

and Shen, 2014; Wojnacki and Galli, 2016). Spatio-

temporal control of developmentally required mem-

brane receptor availability on the surface of axon

terminals is regulated through protein turnover.

Defects in the endolysosomal system lead to accumu-

lations of undegraded membrane proteins before and

after synaptogenesis (Wang et al., 2013). Mutations

in the ubiquitous endosomal maturation factor rab7
in Drosophila surprisingly do not affect embryo and

larval development (Cherry et al., 2013). However,

membrane proteins slowly accumulate during devel-

opment and autophagy is upregulated as a conse-

quence. During later adult stages, the impaired

clearance of membrane proteins in the developing

organism causes neurodegeneration. Drosophila pho-

toreceptor neurons deficient for rab7 complete devel-

opment and function normally as long as they are not

stimulated (Cherry et al., 2013). These findings indi-

cate that constitutive rab7-dependent endolysosomal

turnover is not required for development of these

cells. Similarly, mutations in the neuron-specific

genes n-Syb and V100 lead to accumulation of early

endosomes and autophagosomes during development,

but do not affect photoreceptor neuron development

(Williamson et al., 2010a,b; Haberman et al., 2012;

Cherry et al., 2013). Timing may be critical: since

Drosophila photoreceptor neurons develop over a

timespan of only a few days, “debris” accumulation

may not affect these fast developing neurons as pro-

foundly as neurons with longer development.

Developmental elimination of excess synapses

through pruning is reported to occur via autophagy.

Components of autophagic machinery begin to

express and localize to axons in early development

(Song et al., 2008). Blocking autophagosome forma-

tion by Atg7 knockdown causes overextension of

axons, whereas activation of autophagy by rapamycin

suppresses axonal extension (Ban et al., 2013). In

developing motor neuron axon terminals, the NMJ,

excessive synapses are eliminated through engulf-

ment of retracting axon tips by the surrounding glial

cells, and the degrading axonal membranes were

associated with LC3-positive autolysosomes (Song

et al., 2008). On the postsynaptic site, hyperactivated

mTOR, hence, impaired autophagy, has been linked

to reduced developmental dendritic pruning causing

autism-like neurodevelopmental disorders. mTOR

inhibition by rapamycin corrects developmental spine

pruning defects in mice mutant for autism-causing

Tsc2 (Tang et al., 2014).

Activity-Dependent Degradation

Activity levels of neurons have a substantial impact

on the turnover rate of SV proteins and transmem-

brane receptors on both the presynaptic and postsyn-

aptic side. The Sky/Rab35 mechanism is activity-

dependent, while a possible constitutive role has not

yet been shown. As described above, sky was origi-

nally discovered in Drosophila (Uytterhoeven et al.,

2011) and the Rab35 mechanism was recently shown

to function activity-dependently in rat hippocampal

neurons as well (Sheehan et al., 2016; Sheehan and

Waites, 2017). Sheehan et al. compared protein levels

before and after treatment of cultured neurons with

either activity enhancer or blocker. Neuronal activity

induced Rab35 activation and binding to the ESCRT-

0 protein Hrs, which they identified as a novel Rab35

effector. Their findings demonstrate that the Rab35/

ESCRT pathway facilitates the activity-dependent

removal of SV proteins, to maintain presynaptic pro-

tein homeostasis (Sheehan et al., 2016; Sheehan and

Waites, 2017). It remains to be shown to what extent

individual proteins or organelles are recognized as

dysfunctional, or, alternatively, whether continuous

turnover of proteins or organelles irrespective of their

functional state may suffice to ensure neuronal

health.

Prolonged neuronal activity also induces autoph-

agy at both presynaptic and postsynaptic sites.

Soukup et al. (2016) induced action potentials in

motor neurons by the overexpression of transient

receptor potential cation channel A1 (TrpA1) and

observed increased formation of Atg8-positive auto-

phagosomes and LAMP2-positive lysosomes at pre-

synaptic terminals (Soukup et al., 2016). Conversely,

neuronal stimulation in rat hippocampal neurons

induces autophagosome formation both presynapti-

cally and postsynaptically and possibly regulates the

degradation of GABA and AMPA receptors (Shehata

et al., 2012; Widagdo et al., 2015).

Activity-dependent regulation of the density and

number of AMPA and kainate receptors on the post-

synaptic membrane is a key feature of long-term

changes on synaptic strength. Also, long-term mem-

ory formation from unstable short-term memory

traces depends on rapid spatiotemporal changes of
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synaptic protein composition (Fioravante and Byrne,

2011; Jarome and Helmstetter, 2014). Activity-

dependent sorting of AMPAR to lysosomes has been

reported (Ehlers, 2000; Schwarz et al., 2010;

Widagdo and Anggono, 2015; Widagdo et al., 2015).

More specifically, activity-dependent ubiquitination

of AMPAR results in sorting into LAMP1-positive

lysosomes for degradation (Ehlers, 2000; Schwarz

et al., 2010; Widagdo et al., 2015). In a similar man-

ner, intense activation of kainate receptors causes a

PKC-dependent, but Ca21-independent, internaliza-

tion into lysosomes for degradation (Martin and Hen-

ley, 2004). Intriguingly, recruitment of lysosomes to

dendritic spines was reported to be activity-

dependent (Goo et al., 2017). In sum, neuronal activ-

ity regulates the intracellular trafficking and degrada-

tion of postsynaptic membrane proteins to allow

rapid spatiotemporal changes of synaptic protein

composition, which has been implicated in long term

memory formation (Fioravante and Byrne, 2011; Jar-

ome and Helmstetter, 2014). However, it remains

unclear in most cases, whether degradation occurs

locally at the synapse or during and after retrograde

trafficking back to the cell body.

CONCLUSION

In this review, we highlighted recent advances and

open questions on neuronal membrane protein degra-

dation. Recent studies have beautifully shown that

specific membrane proteins are sorted for degradation

by different mechanisms, at different places in neu-

rons and during different times. However, our survey

of the where, what, and when of neuronal membrane

protein degradation highlights key open questions:

1. Where? While local sorting has been demon-

strated for all neuronal compartments, the ques-

tion of local degradation versus retrograde

trafficking remains largely unanswered.

2. What? The cargo-specificity of both autophagy

and endolysosomal degradation mechanism is

largely unknown and may vary in the different

neuronal compartments.

3. When? Both endolysosomal and autophagic

degradation have been proposed as constitutive

and activity-dependent mechanisms in various

contexts. When these mechanisms are activated

in neurons will require experimental evidence

from both in vitro and in vivo studies.

Answers to these questions are complicated by

interdependencies: axonal and dendritic terminals are

likely to employ different membrane sorting and

degradation mechanisms as a function of develop-

mental and functional stages. Conversely, the same

mechanism, for example, autophagy, has been pro-

posed to function differently, and possibly with

altered cargo-specificity, in different cellular com-

partments. Biochemical analyses of such spatiotem-

porally segregated and interdependent process are

difficult and are dependent on technological advances

such as microfluidic chambers and isolation of the

different neuronal compartments. Primary neuronal

culture is an excellent choice for cell biological stud-

ies using both biochemistry and imaging, but may not

always reflect normal developmental and functional

context. Finally, in vivo systems are typically less

accessible. As always, a combination of these techni-

ques is most likely to yield meaningful solutions, as

long as each system is interpreted relative to other

approaches and its own limitations.

We would like to thank all members of the Hiesinger

lab for discussions.
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